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In analogy to binary Pd(0) carbonyls,1 monomeric homoleptic
isocyanide complexes of Pd(0) have remained elusive species.
Indeed, when studied in conjunction with isocyanides such as
CNXyl, CNt-Bu, and CNCy (Cy ) cyclohexyl), [Pd(CNR)n] species
are observed invariably to aggregate into higher nuclearity clusters.2

With respect to purported bis-isocyanide “[Pd(CNR)2]” species,
early preparations3 did not conclusively establish their monomeric
nature, and subsequent reports4 strongly favored the trimeric
formulation [Pd3(CNR)6]. These latter studies culminated in Francis’
structural determination of triangulo-[Pd(µ2-CNCy)(CNCy)]3, which
was the first binary Pd(0) isocyanide complex to be definitively
characterized.5 Presumably, the proclivity of unencumbered iso-
cyanides to bridge metal centers facilitates the aggregation of these
reduced Pd species. Accordingly, herein we report that the
encumbering m-terphenyl isocyanide, CNArDipp2 (Dipp ) 2,6-
(i-Pr)2C6H3), can successfully stabilize the highly reactive two-
coordinate bis-isocyanide monomer Pd(CNArDipp2)2. Because of the
strong π-acidic nature of the isocyanide function, Pd(CNArDipp2)2

serves as an intriguing counterpoint to two-coordinate Pd0L2

complexes featuring strongly σ-donating phosphine6 (PR3) or
NHC7,8 ligands.

Access to orange Pd(CNArDipp2)2 was achieved by Mg0 reduction
of the dichloride PdCl2(CNArDipp2)2 in a 4:1 Et2O/THF mixture.
Generation of Pd(CNArDipp2)2 by straightforward reduction of a
divalent precursor is notable in that similar protocols have been
reported to yield exclusively trimeric [Pd(µ2-CNR)(CNR)]3

species.4d Both the 1H NMR (C6D6) and FTIR (KBr) spectra of
Pd(CNArDipp2)2 are devoid of features characteristic of a hydride

functionality, lending credence to its zerovalent formulation.
Crystallographic characterization of Pd(CNArDipp2)2 revealed a two-
coordinate monomer which diverges slightly from an ideal linear
geometry (∠(C1-Pd-C2) ) 169.8(2)°, Figure 1a). Isocyanide
bending is observed for one CNArDipp2 ligand (∠C1-N1-C3 )
163.6(4)°), while the other remains comparatively unperturbed
(∠C2-N2-C4 ) 174.1(4)°). Whereas this lack of bending may
be a reflection of only moderate π-back-donation to the isocyanide
ligands, it is important to note that Pd(CNArDipp2)2 gives rise to
νCN stretches (2073 and 2011 cm-1, KBr), that are considerably
lower in energy than found for divalent PdCl2(CNArDipp2)2 (νCN )
2202 cm-1, KBr). Furthermore, Pd(CNArDipp2)2 exhibits average
Pd-Ciso bond distances which are shorter relative to those in
PdCl2(CNArDipp2)2 (1.930(3) Å av vs 1.976(2) Å av, respectively).
These structural data are consistent with appreciable π back-
donation in Pd(CNArDipp2)2, as zerovalent centers may be reasonably
expected to exhibit longer M-L bond distances than their divalent
counterparts when only σ-donor ligands are present. Significant π
back-donation in Pd(CNArDipp2)2 is also indicated by DFT calcula-
tions, which clearly reveal two orthogonal π-back-bonding interac-
tions (see the Supporting Information).

The encumbering ArDipp2 units provide Pd(CNArDipp2)2 with a
substantial degree of thermal and kinetic stability in solution. As
indicated by 1H NMR spectroscopy, Pd(CNArDipp2)2 does not
decompose in C6D6 when heated to 80 °C for up to 5 d.
Furthermore, while the CNArDipp2 ligands effectively stabilize a
monomeric Pd(0) complex, they also enforce a homoleptic bis-
isocyanide formulation. Thus, as assayed by both 1H NMR and

Figure 1. (A) Reaction pinwheel for Pd(CNArDipp2)2 and molecular structures of [TlPd(CNArDipp2)2]OTf (left), Pd(CNArDipp2)2 (center), and Pd(κ1-N-
PhNO)2(CNArDipp2)2 (right). (B) HOMO, LUMO, and qualitative MO diagram for Pd(κ1-N-PhNO)2(CNArPh2)2 based on restricted S ) 0 DFT calculations.
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FTIR spectroscopies, addition of another equivalent of CNArDipp2

to Pd(CNArDipp2)2 in C6D6 results in rapid isocyanide exchange
rather than formation of a tris-isocyanide species. Variable tem-
perature studies in toluene-d8 indicate that isocyanide exchange
remains fast on the 1H NMR time scale down to -80 °C.

In accord with its reduced nature, Pd(CNArDipp2)2 is competent
for the oxidative addition of σ-bonds. For instance, Pd(CNArDipp2)2

readily forms the benzyl chlorido complex PdCl(Bz)(CNArDipp2)2

upon reaction with PhCH2Cl. Similarly, Pd(CNArDipp2)2 also adds
across the carbon-bromine bond of mesityl bromide (MesBr) to
generate PdBr(Mes)(CNArDipp2)2 (Figure 1a). Remarkably, despite
the additional presence of the encumbering Mes substituent,
PdBr(Mes)(CNArDipp2)2 retains its integrity in C6D6 solution at 80
°C for several days. Such behavior is notable since LnM(R)(CNR′)
species, especially those featuring sterically congested coordination
environments, are well-known to form iminoacyl complexes (i.e.,
LnM(C(dNR′)R)) via migratory insertion.9

The resistance of PdBr(Mes)(CNArDipp2)2 toward migratory insertion
processes suggested that a CNArDipp2-supported Pd system may effect
Suzuki-Miyaura C-C bond formation.10 Indeed, Pd(0) complexes
of the type Pd(PR3)2 and Pd(NHC)2 are well-known to be chemically
competent for catalytic Caryl-Caryl and Caryl-N bond coupling.6,8,11

However, π-acidic ligands have received limited attention as ancillary
groups in Pd-based cross-coupling chemistry. This is surprising given
that electron-rich, monoligated Pd0L species are proposed6 as the
catalytically active protagonists in cross-coupling schemes and may
be further stabilized by a π-acidic ligand. Accordingly, in preliminary
unoptimized screens, 5 mol % Pd(CNArDipp2)2 was found to readily
cross-couple MesBr with phenyl boronic acid (PhB(OH)2) in 94%
isolated yield in THF solution at room-temperature. Furthermore, the
less hindered substrate, 2-MeC6H4Br, is similarly coupled with
PhB(OH)2 in 95% isolated yield.

The low-coordinate, electron-rich nature of Pd(CNArDipp2)2

renders it active toward Lewis acidic substrates. Thus, treatment
of Pd(CNArDipp2)2 with TlOTf forms the Lewis acid-base adduct
[TlPd(CNArDipp2)2]OTf, which contains a one-coordinate Tl(I) center
directly bound to Pd (Figure 1a).12 Interestingly, Tl(I) acetate is
known13 to accelerate Pd-catalyzed C-C bond formation, and
further investigations of [TlPd(CNArDipp2)2]OTf in conjunction with
the coupling chemistry outlined above may potentially elucidate
the elementary steps governing this process.

Bis-isocyanide Pd(CNArDipp2)2 also reacts smoothly with elec-
tronically unsaturated substrates. Addition of 1 equiv of dioxygen
to Pd(CNArDipp2)2 proceeds smoothly to the peroxo complex
(η2-O2)Pd(CNArDipp2)2, which serves as a structurally characterized
complement to (O2)Pd(CNt-Bu)2 prepared by Otsuka (Figures 1a
and S4.6).3c Most remarkably however, Pd(CNArDipp2)2 reacts with
2 equiv of nitrosobenzene (PhNO) to form the dark red, diamagnetic
complex Pd(κ1-N-PhNO)2(CNArDipp2)2. Structural characterization
of the latter revealed a distinctly square planar coordination
geometry about Pd, thus strongly indicating the presence of a
divalent metal center (Figure 1a). Metrical parameters supporting
this claim include a d(Pd-Ciso) of 2.004(2) Å,14 which is markedly
longer than those of Pd(CNArDipp2)2, and near linear Ciso-N-Cipso

angles (174.6(2)°) reflective of decreased π-back-donation to the
isocyanide ligands.15 Furthermore, the N-O bond length of
1.291(2) Å for Pd(κ1-N-PhNO)2(CNArDipp2)2 is longer than typically
found in monomeric nitrosoarene compounds but shorter than
standard N-O single bonds.16 However, it is in fact considerably
longer than the N-O bond length in divalent PdCl2(κ1-N-PhNO)2

(d(NO) ) 1.209(3) Å).17

It is tempting to suggest that ligation to Pd(CNArDipp2)2 results in a
one-electron reduction of each κ1-N-PhNO unit to its O-centered
nitroxyl radical. Coupled with the observed diamagnetism of
Pd(κ1-N-PhNO)2(CNArDipp2)2, such a valence bond picture suggests
that a singlet diradical form18 may be a significant resonance
contribution to its electronic structure. However, an alternative, MO
description featuring a (σ)4(π)4(π*)2 singlet ground state with nonde-
generate π* components (ag and au in Ci symmetry) may also accurately
describe the electronic structure of the NO units in Pd(κ1-N-
PhNO)2(CNArDipp2)2. Indeed, restricted DFT calculations on the S )
0 state of the model Pd(κ1-N-PhNO)2(CNArPh2)2 correspond well with
this latter view (Figure 1b). Notably, both foregoing bonding descrip-
tions correspond to a formal NO bond order of 1.5 for each κ1-N-
PhNO ligand, which to our knowledge is unprecedented in the
coordination chemistry of nitroso compounds.16 Accordingly, detailed
investigations into Pd(κ1-N-PhNO)2(CNArDipp2)2 and the chemistry
accessible to zerovalent Pd(CNArDipp2)2 are in progress.
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